Mean first-passage times of non-Markovian random walkers in confinement.

نویسندگان

  • T Guérin
  • N Levernier
  • O Bénichou
  • R Voituriez
چکیده

The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean first-passage times in confined media: from Markovian to non-Markovian processes

We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabili...

متن کامل

Multiple random walks on complex networks: A harmonic law predicts search time.

We investigate multiple random walks traversing independently and concurrently on complex networks and introduce the concept of mean first parallel passage time (MFPPT) to quantify their search efficiency. The mean first parallel passage time represents the expected time required to find a given target by one or some of the multiple walkers. We develop a general theory that allows us to calcula...

متن کامل

Speeding up non-Markovian First Passage Percolation with a few extra edges

One model of real-life spreading processes is First Passage Percolation (also called SI model) on random graphs. Social interactions often follow bursty patterns, which are usually modelled with i.i.d. heavy-tailed passage times on edges. On the other hand, random graphs are often locally tree-like, and spreading on trees with leaves might be very slow, because of bottleneck edges with huge pas...

متن کامل

A Non-Preemptive Two-Class M/M/1 System with Prioritized Real-Time Jobs under Earliest-Deadline-First Policy

This paper introduces an analytical method for approximating the performance of a two-class priority M/M/1 system. The system is fully non-preemptive. More specifically, the prioritized class-1 jobs are real-time and served with the non-preemptive earliest-deadline-first (EDF) policy, but despite their priority cannot preempt any non real-time class-2 job. The waiting class-2 jobs can only be s...

متن کامل

Cover time for random walks on arbitrary complex networks

We present an analytical method for computing the mean cover time of a discrete-time random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity is particularly important for random search processes and target localization on network structures. Based on the global mean first-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature

دوره 534 7607  شماره 

صفحات  -

تاریخ انتشار 2016